
21st Annual FIRST Conference on Computer Security Incident Handling
June 28–July 03, 2009 - Kyoto, Japan

 1

Proposal of MyJVN (Web Service APIs)
for Security Information Exchange infrastructure

Masato Terada1)2)3), Ken Sugiyama1), Yoshiaki Saito1)
Tadashi Yamagishi1), Hideaki Kobayashi1) and Norihisa Doi2)

Abstract
Unauthorized access intended to distribute malware has been widely spread across
the Internet and causing a lot of damage worldwide. In order to eliminate
vulnerabilities that can be exploited by those malware and prevent unauthorized
access, it is necessary to improve the way to distribute security information about
computer software and hardware. In this paper, we examine how we can provide a
more efficient security information distribution service for the security administrators
that helps them reduce their workload related in gathering information from various
sources and take care of vulnerabilities and incidents.

We propose MyJVN that is the framework of Web service APIs with the common
enumeration based as security information sharing and exchanging. Currently,
JPCERT/CC and IPA (Information-technology Promotion Agency) are promoting a
framework to handle vulnerability information in Japan. They offer JVN (Japan
Vulnerability Notes), a portal site to provide security information about the domestic
computer software and hardware manufactured by the vendors participating in the
framework.

MyJVN is one of the methods JVN has been using to distribute security
information. MyJVN has Web service APIs that are based on CPE (Common
Platform Enumeration) as a structured naming scheme for products to correlate
security information issued by various sources. In this paper, firstly we will explain
the specification and applications of MyJVN. Secondly, we will introduce our
feasibility study on MyJVN.

Keywords
Network Security, Vulnerability, Information Sharing, Web service API

1. Introduction

Recently, malware (Viruses, Worms, Trojan Horses and Bots etc.) propagation is
widely seen and causing a lot of damage broadly in various ways. In order to
prevent unauthorized access and eliminate the vulnerabilities in the information
systems, it is necessary to improve the security information sharing to enable
users to take appropriate actions.

In Japan, July 2004, the Ministry of Economy, Trade and Industry (METI)
adopted the "Standard for Handling Software Vulnerability Information" as an
official rule, and began promoting the "Information Security Early Warning
Partnership" as an implementation framework [1]. The JVN has become the
portal site to provide the security information about the domestic computer
software and hardware manufactured by the vendors that are registered to the
framework [2].

Currently, JVN has the two functions that are vulnerability handling
coordination database (JVN, http://jvn.jp/en/index.html) and vulnerability
archiving database (JVN iPedia, http://jvndb.jvn.jp/en/) (Figure 1). The former as
the vulnerability handling coordination database stores the results of coordination
with JPCERT/CC and product vendors. The latter as the vulnerability archiving
stores the vulnerability countermeasure information that covers the international
and Japan regional fields. And this security information is distributed in the form
of a HTML-based web page. This means that fragmented information from
various websites are collected and reassembled, and considerable time and efforts
are required to reestablish the connections and relationships among the various
bits and pieces of information. In short, it is necessary to improve the method of
the security information exchange. From the information provider’s point of view,
if information could be published in a form more easily processed by a machine,
then information could be reused much more flexibly and extensively.

 1) Security Center, IPA (Information-technology Promotion Agency, Japan)
 2) Graduate School of Science and Engineering, Chuo University
 3) JVN associate staff, JPCERT/CC
 Hitachi Incident Response Team, Hitachi Ltd.

21st Annual FIRST Conference on Computer Security Incident Handling
June 28–July 03, 2009 - Kyoto, Japan

 2

Overall vulnerabilities

Vulnerabilities of
Domestic products

Reported vulnerabilities by
Information Security Early

Warning Partnership

MyJVN

Vulnerabilities,
assigned the CVE number

JVN iPedia
Archiving DBJVN Coordination DB

Machine readable interface
by Web service API

Figure 1 : Functional architecture of JVN.

We propose MyJVN[3] that is the framework of Web service APIs with the

common enumeration based as a security information sharing and exchanging.
This paper discusses the framework of MyJVN and its applications. At the end,
we will introduce the feasibility study on MyJVN.

2. Related Work
The related researches on the security information exchange specification of
vulnerability database are the followings.

NIST NVD [4]
National Vulnerability Database (NVD) is a comprehensive cyber security
vulnerability database and refers to CVE(Common Vulnerabilities and
Exposures)[5], CVSS(Common Vulnerability Scoring System)[6], CPE(Common

Platform Enumeration)[7], CWE(Common Weakness Enumeration)[8]. It
provides search capability and directs users to vulnerability and patch
information. And also it provides the XML export function as machine-readable
format [9].

OSVDB [10]
Open Source Vulnerability Database (OSVDB) is a vendor-neutral vulnerability
database for the information security community. The goals of the project are to
promote a greater and more open collaboration between companies and
individuals, eliminate redundant works and reduce expense inherent in the
system and product development. OSVDB supports the APIs that will return a
list of OSVDB ID's, or regular results, which are in XML (See Table 1).

Table 1 : Web Service APIs provided by OSVDB.
Class Description
Mapping API These queries map a given value to an OSVDB_ID, and return

either XML in the case of regular queries, or text (csv) for simple
queries.

Core Queries These functions map a vendor, for example, to their vulnerabilities,
and return XML regarding the vulnerabilities.

Supporting
Queries

These functions map ID values returned from other queries to
supporting information within OSVDB, like vendors, products,
classifications, etc.

Making use of MyJVN is an essential point in the security information exchange,
for this handily resolves the following three basic issues:

 Distribution designed to encourage reuse of information

Our primary objective is to aggregate security information from the product
vendors and provide it through the JVN website. But in order to reuse
published information, it must be offered in a machine-readable format. This
is where RSS comes in. By using RSS, JVN data can be distributed in the
same way just as the news feeds provided by the news websites. And

21st Annual FIRST Conference on Computer Security Incident Handling
June 28–July 03, 2009 - Kyoto, Japan

 3

because the content is described by RSS, it can be easily verified if
information has been added to an item or an item has been updated.

 Easy confirmation procedure to vulnerability countermeasure
Second objective is easier to check the vulnerability countermeasure
information announced.

 Establishment of security information exchange infrastructure
There is a limit of HTML provider based approach for security information
exchange. We should provide the possibility of the security information
exchange customized to users.

3. Proposal of MyJVN as security information exchange
infrastructure

The purpose of framework MyJVN is to provide the security information
exchange infrastructure in consideration of the vulnerability management and the
countermeasure automation. In first step, we establish a platform identifier, XML
formats and Web service APIs to achieve the framework MyJVN. Next, we
implement a filtered security information service as the point of view of “What
kind of vulnerability exists in the product?”.

3.1 Components of framework MyJVN
In this section, we describe a platform identifier, XML formats and a Web service
APIs in the framework MyJVN.

(1) Platform identifier
It is important to distinguish the software package being used, because the
impacts of the vulnerability are different in the version even if they are the
distinction of the software package being installed and the same software for the
vulnerability countermeasure. So, MyJVN promotes the CPE for the software
package distinction. CPE is a structured naming scheme for information
technology systems, platforms and packages (Figure 2). Based upon the generic
syntax for Uniform Resource Identifiers, CPE includes a formal name format, a

language for describing complex platforms, a method for checking names against
a system, and a description format for binding text and tests to a name.

cpe:/{part}:{vendor}:{product}:{version}:{update}:{edition}:{language}

Figure 2 : CPE Name Basic Structure.

(2) XML formats
In order to gather the information and perform the relationship between the
gathered information, it is necessary to improve the method of the security
information sharing. If the security information is machine readable, many
Internet sites can reduce the cost of information gathering. Our security
information sharing proposes the XML formats as to approach solving these
problems. JVNRSS is the overview XML format based on RSS and VULDEF is
the detail XML format (Figure 3). Also, mod_sec is RSS Extension of security
information distribution, and definition of the tags for RSS 1.0, 2.0 and Atom
[11].

Overview

Title

Affected System

Impact

Solution

Exploit

Reference

Overview Format

Detail Format
VULDEF

JVNRSS 2.0
= RSS1.0+mod_sec

or
RSS2.0+mod_sec
Atom+mod_sec

Figure 3 : XML format for Overview(JVNRSS) and Detail(VULDEF) of

vulnerability countermeasure information.

21st Annual FIRST Conference on Computer Security Incident Handling
June 28–July 03, 2009 - Kyoto, Japan

 4

(a) JVNRSS(JVN RDF Site Summary)[12]
JVNRSS 2.0 is based on RSS 1.0 and uses the field <sec:references> of the
mod_sec as a primary key to group security information. Also it uses the field
<dcterms:issued> <dcterms:modified> of the Qualified Dublin Core and
<sec:identifier> of the mod_sec. RSS contains a list of items, each of which is
identified by a link. Each item can have any amount of metadata associated with
it. The most basic metadata supported by RSS includes a title for the link and a
description of it. We use JVNRSS as overview XML format to distribute the
vulnerability countermeasure information in MyJVN.

(b) mod_sec(Qualified Security Advisory Reference)[13]
The mod_sec is RSS Extension of security information distribution, and
definition of the tags for RSS 1.0, 2.0 and Atom. We propose new tags
<sec:cvss> and <sec:cpe-item> such as common enumeration to easier establish
security information exchange infrastructure (Figure 4)．

xmlns:sec="http://jvn.jp/rss/mod_sec/"
xsi:schemaLocation="http://jvn.jp/rss/mod_sec/
 http://jvndb.jvn.jp/schema/mod_sec_2.0.xsd">

<sec:identifier>Unique identifier assigned by vendor</sec:identifier>
<sec:references>Best reference to a related security information</sec:references>
<sec:cvss score="Overall score"
 severity="Severity level (High - Medium - Low)"
 vector="Value of each vector in CVSS"
 version="CVSS version" />
<sec:cpe-item name="CPE Name">
 <sec:vname>Vendor Name</sec:vname>
 <sec:title>Product Name</sec:title>
</sec:cpe-item>

Figure 4 : RSS Extension of security information distribution (mod_sec).

(c) VULDEF(The VULnerability Data publication and Exchange Format
data model)[14]
The purpose of “The VULnerability Data publication and Exchange Format data
model” is to define data formats for the information related to security advisory
typically published by the product vendors and Computer Security Incident
Response Teams. VULDEF has some elements to describe the vulnerability,
affected item and solution etc.

(3) Web service APIs
With the Web Service APIs, many user sites can build applications to perform
tasks. We would like to establish the Web Service APIs for Security Information
Exchange infrastructure. In the first step, we propose the following Web Service
APIs. The four basic request methods and the JVNRSS response format of
“method=getVulnOverviewList” are shown in Table 2 and Figure 5.

Table 2 : The four basic methods in Web Service APIs of MyJVN.
Class Description
getVendorList The vendor list that is filtered by the CPE is acquired in XML

format [15].
http://jvndb.jvn.jp/myjvn?method=getVendorList&cpeName=
cpe:/*:j*&lang=en

getProductList The product list that is filtered by the CPE is acquired in
XML format [15].
http://jvndb.jvn.jp/myjvn?method=getProductList&cpeName
=cpe:/*:sony:*&lang=en

getVulnOverviewList The vulnerability overview list that is filtered by the CPE is
acquired in JVNRSS(RSS + mod_sec) format.
http://jvndb.jvn.jp/myjvn?method=getVulnOverviewList&cp
eName=cpe:/*:fujitsu:*&rangeDatePublic=n&rangeDatePubl
ished=n&lang=en

getVulnDetailInfo The vulnerability detail information is acquired in VULDEF
format.
http://jvndb.jvn.jp/myjvn?method=getVulnDetailInfo&vulnId
=JVNDB-2009-000004&lang=en

21st Annual FIRST Conference on Computer Security Incident Handling
June 28–July 03, 2009 - Kyoto, Japan

 5

<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://purl.org/rss/1.0/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:sec="http://jvn.jp/rss/mod_sec/"
 xsi:schemaLocation="http://purl.org/rss/1.0/ http://jvndb.jvn.jp/schema/jvnrss_2.0.xsd">
 <channel rdf:about=" http://jvndb.jvn.jp/myjvn?method=getVulnOverviewList">
 <title>JVN vulnerability OVERVIEW list </title>
 <link>http://jvndb.jvn.jp/en/apis/myjvn</link>
 <description>JVN vulnerability OVERVIEW list</description>
 <items>
 <rdf:Seq>
 <rdf:li rdf:resource
 ="http://jvndb.jvn.jp/en/contents/2009/JVNDB-2009-000004.html"/>
 </rdf:Seq>
 </items>
 </channel>
 <item rdf:about="http://jvndb.jvn.jp/en/contents/2009/JVNDB-2009-000004.html">
 <title>About Web Service APIs of MyJVN</title>
 <link>http://jvndb.jvn.jp/en/contents/2009/JVNDB-2009-000004.html </link>
 <sec:identifier>JVNDB-2009-000004</sec:identifier>
 <sec:references>http://jvn.jp/en/jp/JVN66828183/index.html </sec:references>
 <sec:references>http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5941
 </sec:references>
 <sec:cvss score="2.6" severity="Low" vector="" version="2.0" />
 <sec:cpe-item name="cpe:/a:jvn:jvndb">
 <sec:vname>JVN</sec:vname>
 <sec:title>Japan Vulnerability Notes</sec:title>
 </sec:cpe-item> mod_sec
 <dc:publisher>IPA</dc:publisher>
 <dc:date>2008-10-10T10:10+00:00</dc:date>
 <dcterms:issued>2008-10-10T10:10+00:00</dcterms:issued> Qualified
 <dcterms:modified>2008-11-11T11:11+00:00</dcterms:modified> Dublin Core
 </item>
</rdf:RDF>

Figure 5 : JVNRSS response format of method=getVulnOverviewList.

3.2 Filtered Security Information Service
In this section, we describe a Filtered Security Information Service that
combined with the front end GUI and Web Service APIs of MyJVN
(http://jvndb.jvn.jp/en/apis/myjvn/). Filtered Security Information Service has
four components (JVN DB, CPE DB, Web Service APIs and SWF) that are
shown in Figure 6.

JVNJVN

JVN Extension
(MyJVN)
JVN Extension
(MyJVN)

CPE
DB

JVN
DB

HTML
Translation

Module

Web Service
APIs Module

JVNRSS/VULDEF

HTML

SWF

RSS

XML

HTML

Web Service APIs
Figure 6 : System Overview of the Filtered Security Information Service.

(1) JVN DB
JVN DB is the vulnerability archiving database that stores the vulnerability
countermeasure information which cover the international and Japan regional
fields.
(2) CPE DB
CPE DB is mapping database that stores the mapping of the product entries of
JVN DB and CPE names.
(3) Web Service APIs Module
We implemented the four functions (getVendorList, getProductList,

21st Annual FIRST Conference on Computer Security Incident Handling
June 28–July 03, 2009 - Kyoto, Japan

 6

getVulnOverviewList and getVulnDetailInfo) as basic Web Service APIs.
(4) Flash GUI (SWF) as the front end GUI
In shown Figure 7, Flash GUI is the front end GUI as reference implementation
of Web Service APIs. This Flash GUI has the grouping module that finds
<sec:cpe-item> with the same name in the response of getVulnOverviewList
method, it makes these <items> into a same group. When "VEND" is selected,
the displayed listing will have the following priority: vendor name (ascending
order) > product name (ascending order) > last updated (descending order) >
vulnerability countermeasure information ID (descending order).

Figure 7 : Filtering Result Window

by getVulnOverviewList Web Services API.

And Figure 8 is the initial setup wizard of the filtering condition. First, from the
vendor listing, you select the vendor of the product for which you wish to obtain
information. After the vendors have been selected, at the product selection
window, you select the product name from the product listing. In this setup
wizard uses getVendorList method for the acquirement of vendor information
and getProductList method for the acquirement of product information.

Figure 8 : Initial setup wizard of Flash GUI
for Filtered Security Information Service.

21st Annual FIRST Conference on Computer Security Incident Handling
June 28–July 03, 2009 - Kyoto, Japan

 7

In shown Figure 9, this window is displayed when one of the vulnerability
countermeasure information with VULDEF format listed in the filtering result
window is clicked.

Figure 9 : Detailed Vulnerability Countermeasure Information Window

by getVulnDetailInfo Web Services API.

4. Feasibility Study of OVAL light-weight interpreter
In above section, we described the Filtered Security Information Service with the
manual configuration. In this section, we consider the filtered security
information service with the automatic configuration possibilities using OVAL
definition files.

(1) OVAL
OVAL (Open Vulnerability and Assessment Language) is an international,
information security, community standard to promote open and publicly available
security content, and to standardize the transfer of this information across the
entire spectrum of security tools and services [16].

In feasibility study, we implement OVAL light-weight interpreters to check the
version number of installed products on your PC. Also, we combine the filtered
security information service with OVAL light-weight interpreter to achieve the
automatic configuration possibilities of the filtering condition.

(2) SWF-based version checker
We introduce SWF-based OVAL light-weight interpreter (SWF interpreter). This
SWF interpreter is Flash application program and provides the function of
version number check of Flash Player using OVAL definition file. Figure 10 is a
<states> part of OVAL definition file using by SWF interpreter which extracts a
version number of itself and compares it with a value of <file_state
id="oval:jp.ac.chuo-u.ise.jvnrss.oval:ste:1001">.

<states>
<file_state id="oval:jp.ac.chuo-u.ise.jvnrss.oval:ste:1001" version="1“
xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-5#windows">
<version datatype="version“ operation="equal">10.0.12.36</version>
</file_state>

</states>
Figure 10 : OVAL definition for Flash Player version check.

21st Annual FIRST Conference on Computer Security Incident Handling
June 28–July 03, 2009 - Kyoto, Japan

 8

In shown Figure 11, we show the results of version number check by SWF
interpreter. The Figure of left is to same value of version number of OVAL
definition. The Figure of right is to different value that means old Flash Player
version. These results lead the automatic configuration possibilities in the
Filtered Security Information Service by OVAL.

The latest Flash Player version installed.

 The old Flash Player version installed.

Figure 11 : The results of version check by SWF interpreter.

(3) JAR-based version checker
JAR-based OVAL light-weight interpreter (JAR interpreter) provides the function
of version number check of some installed programs using OVAL definition files.
Figure 12 is a part of OVAL definition file for Flash Player by JAR interpreter.
JAR interpreter acquires a registry data (CurrentVersion value) from the registry
repository by <registry_object id="oval:jp.ac.chuo-u.ise.jvnrss.oval:obj:1002">
and compares it with a value in <registry_state id="oval:jp.ac.chuo-u.ise.jvnrss.
oval:ste:1002">.

In shown Figure 13, we show the results of version check by JAR interpreter.
The character (O:) of the upper side in box is a value of <registry_state> of
OVAL definition. The character (R:) of the bottom side in box is a registry data
of the registry repository of Microsoft Windows system. Also, the character circle
(O) of DirectX and Windows XP show a registry data is same version number of
OVAL definition. The character cross(X) is to different value that means old
Flash Player and JRE version. The character minus (-) of Netscape shows that
application program is not installed. These results lead the automatic
configuration possibilities in the Filtered Security Information Service, too.

<oval_definitions>
<generator>
<oval:schema_version>5.4</oval:schema_version>
<oval:timestamp>2008-06-14T12:18:00+09:00</oval:timestamp>

</generator>
<definitions>
<definition id="oval:jp.ac.chuo-u.ise.jvnrss.oval:def:1200800001002"

class="vulnerability" version="1">
<metadata>
<title>Flash Player Latest Version Check</title>
<affected family="windows">
<product>Flash Player</product>

</affected>
<reference source="CPE" ref_id="cpe:/a:adobe:flash_player"

ref_url="http://www.adobe.com/jp/support/flashplayer/ts/documents/tn_15507.htm" />
<description>Adobe (Macromedia) Flash Player Latest Version Check</description>

</metadata>
<criteria comment="FlashPlayer" operator="AND">
<criterion comment="FlashPlayer (Latest version 9.x) is not installed"

test_ref="oval:jp.ac.chuo-u.ise.jvnrss.oval:tst:1002" />
</criteria>

</definition>
</definitions>
<tests>
<registry_test id="oval:jp.ac.chuo-u.ise.jvnrss.oval:tst:1002" version="1"

comment="a version of FlashPlayer is installed"
check_existence="at_least_one_exists"
check="at least one"
xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-5#windows">
<object object_ref="oval:jp.ac.chuo-u.ise.jvnrss.oval:obj:1002" />
<state state_ref="oval:jp.ac.chuo-u.ise.jvnrss.oval:ste:1002"/>

</registry_test>
</tests>
<objects>
<registry_object id="oval:jp.ac.chuo-u.ise.jvnrss.oval:obj:1002" version="1"

comment="This registry key identifies the FlashPlayer current version."
xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-5#windows">
<hive>HKEY_LOCAL_MACHINE</hive>
<key>SOFTWARE¥Macromedia¥FlashPlayer</key>
<name>CurrentVersion</name>

</registry_object>
</objects>
<states>
<registry_state id="oval:jp.ac.chuo-u.ise.jvnrss.oval:ste:1002" version="1"

comment="The registry key has a value of FlashPlayer"
xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-5#windows">
<value>9,0,124,0</value>

</registry_state>
</states>

</oval_definitions>
Figure 12 : OVAL definition for Flash Player version check.

21st Annual FIRST Conference on Computer Security Incident Handling
June 28–July 03, 2009 - Kyoto, Japan

 9

Figure 13 : The results of version check by JAR interpreter.

(4) JAR-based automatic configuration & filtering tool
We show the proof of concept prototype for the Filtered Security Information
Service with the automatic configuration. This system has five components (JVN
DB, CPE DB, OVAL DB, Web Service APIs extension and JAR) that are shown
in Figure 14. JVN DB and CPE DB are same Dada bases in Figure 6.

JVN & JVN Extension(MyJVN)JVN & JVN Extension(MyJVN)

CPE
DB

JVN
DB

Web Service
APIs Module

Extension

OVAL
DB

OVAL

JVNRSS/VULDEF

JAR

Figure 14 : Prototype overview of the Filtered Security Information Service

with automatic configuration.

Web Service APIs module extension supported the two following APIs newly
(Table 3). OVAL DB has the OVAL definition files of some application programs
and provides that files by the Web Service APIs module extension to JAR-based
automatic configuration tool.

Table 3 : The new two methods of Web Service APIs in extension.
Class Description
getOvalList The OVAL definition list is acquired in XML format [15].

http://jvndb.jvn.jp/myjvn?method=getOvalList&platform=cpe:/o
:microsoft:windows-nt:vista

getOvalData The OVAL definition file is acquired in OVAL format.
http://jvndb.jvn.jp/myjvn?method=getOVALdata&ovalid=oval:j
p.ac.chuo-u.ise.jvnrss.oval:def:9009

In shown Figure 15, JAR-based automatic configuration & filtering tool (JAR
filtering tool) is the front end GUI that includes the OVAL light-weight
interpreter for the version check function and the implementation of Web Service
APIs extension. JAR filtering tool of this prototype downloads some OVAL files
from OVAL DB via getOvalList and getOvalData methods, and checks whether
the targeted application programs are being installed. "Start" button is clicked in
Figure 15, then JAR filtering tool begins to check the installed application
programs by OVAL definition files. And JAR filtering tool displays the installed
application programs in left side window.

Also, JAR filtering tool extracts a CPE name from <reference source="CPE"
ref_id="cpe:/a:sun:jre" ref_url="http://java.com/ja/" /> in OVAL definition file
and issues the getVulnOverviewList method to display the vulnerability
countermeasure information related with JRE (Sun Java Runtime Environment)
in the right side window. And this window invokes the your browser window that
is displayed when one of the vulnerability countermeasure information with
VULDEF format listed in the filtering result window is double clicked.

21st Annual FIRST Conference on Computer Security Incident Handling
June 28–July 03, 2009 - Kyoto, Japan

 10

5. Conclusion
We propose MyJVN that is proof of concept of Web service APIs with the
common enumeration based as security information sharing and exchanging.
This paper has discussed the framework of MyJVN and the Filtered Security
Information Service as its applications.

Furthermore, we introduced our feasibility study of the automatic

configuration possibilities in the Filtered Security Information Service by OVAL
definition.

Installed Program List window

Vulnerability Overview List related
with the installed program

Figure 15 : JAR interpreter with automatic configuration combined with the Filtered Security Information Service.

21st Annual FIRST Conference on Computer Security Incident Handling
June 28–July 03, 2009 - Kyoto, Japan

 11

Acknowledgements
The authors are grateful to Hiroshi Takasaki and Chika Nukui for their assistance,
and to their colleagues in the IPA and JPCERT/CC for their insightful comments.

References

1) Information Security Early Warning Partnership,

http://www.ipa.go.jp/english/security/third.html
2) JVN: Japan Vulnerability Notes, http://jvn.jp/en/
3) MyJVN, http://jvndb.jvn.jp/en/apis/myjvn/
4) NVD: National Vulnerability Database, http://nvd.nist.gov/
5) CVE: Common Vulnerabilities and Exposures, http://cve.mitre.org/
6) CVSS: Common Vulnerability Scoring System, http://www.first.org/cvss/
7) CPE: Common Platform Enumeration, http://cpe.mitre.org/
8) CWE: Common Weakness Enumeration, http://cwe.mitre.org/
9) NVD Data Feed and Product Integration, http://nvd.nist.gov/download.cfm
10) Open Source Vulnerability Database, http://www.osvdb.org/
11) Masato Terada, Shingo Takada, Junji Fukuzawa, Norihisa Doi: “Proposal of
RSS Extension for Security Information Exchange”, 18th Annual FIRST
Conference (Baltimore, Maryland, United States, June 25 - 30, 2006),

http://www.first.org/conference/2006/papers/terada-masato-papers.pdf
12) JVNRSS: JVN RDF Site Summary,

http://jvndb.jvn.jp/en/schema/jvnrss.html

Trademark Information
Adobe, Acrobat and Flash are either trademarks or registered trademarks of Adobe Systems Incorporated
in the United States and/or other countries. CVE, CWE, CPE, and OVAL are registered trademarks of The
MITRE Corporation. OSVDB is trademarks of OSVDB. Java and all Java-based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems, Inc. Microsoft, Windows XP and DirectX are
registered trademarks of Microsoft Corporation. All other trademarks and copyrights referred to are the
property of their respective owners.

13) mod_sec: Qualified Security Advisory Reference,

http://jvndb.jvn.jp/en/schema/mod_sec.html
14) VULDEF: The VULnerability Data publication and Exchange Format data
model, http://jvndb.jvn.jp/en/schema/vuldef.html
15) XML Schema for the product list of MyJVN,

http://jvndb.jvn.jp/schema/productlist_2.0.xsd
16) OVAL: Open Vulnerability and Assessment Language, http://oval.mitre.org/

